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Experiments on stability and transition
at Mach 3†
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The results of an experimental study of stability, receptivity and transition of the
flat-plate laminar boundary layer at Mach 3 are discussed. With a relatively low free-
stream disturbance level (∼ 0.1%), spectra, growth rates and amplitude distributions
of naturally occurring boundary layer waves were measured using hot wires. Physical
(mass-flux) amplitudes in the boundary layer and free stream are reported and provide
stability and receptivity results against which predictions can be directly compared.
Comparisons are made between measurements of growth rates of unstable high-
frequency waves and theoretical predictions based on a non-parallel, mode-averaging
stability theory and receptivity assumptions; good agreement is found. In contrast,
it was found that linear stability theory does not account for the measured growth
of low-frequency disturbances. A detailed investigation of the disturbance fields in
the free stream and on the nozzle walls provides the basis for a discussion of the
source and the development of the measured boundary layer waves. Attention is
drawn to the close matching in streamwise wavelengths for instability waves and the
free-stream acoustic disturbances. It was also found that a calibration of the hot
wire in the free stream yields a double-peak boundary layer disturbance amplitude
distribution, as has been found by previous investigators, which is not consistent
with the predictions of linear stability theory. This double peak was found to be
an experimental anomaly which resulted from assumptions that are frequently made
in the free-stream calibration procedure. A single-peak amplitude distribution across
the boundary layer was established only when the hot-wire voltage was calibrated
against the mean boundary layer profile. Finally, the late stages of transition, at a
higher Reynolds number with a higher free-stream disturbance level, were explored.
Calibrated amplitude levels are provided at locations where nonlinearities are first
detected and where the mean boundary layer profile is first observed to depart from
the laminar similarity solution. A qualitative discussion of the character of ensuing
nonlinearities is also included.

1. Introduction
Boundary layer transition from a laminar to a turbulent state has been theoretically

and experimentally investigated for almost a century, motivated by the fact that
friction and heat transfer characteristics change dramatically when transition from
laminar to turbulent flow occurs. In supersonic and hypersonic flows, transition can
have critical practical consequences since skin friction and aerodynamic heating play
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a considerable role in vehicle design. The physical mechanisms leading to transition
in high-speed flows are, however, still poorly understood (Reshotko 1994).

Early transition experiments in compressible flows (Dryden 1955) were aimed at
investigating the effects of mean flow parameters on the transition Reynolds number.
It was shown, at least qualitatively, that for low supersonic Mach numbers the
movement of the location of transition, in response to a change in Mach number
or in response to different heat transfer conditions at the wall, was consistent with
predictions based on an asymptotic linear stability theory developed by Lees (1947).
Later, the direct numerical solutions of the linear equations performed by Brown
(1962) and particularly by Mack (see Mack 1984 for a comprehensive review of
Mack’s numerical work) revealed critical differences between stability in incompres-
sible boundary layers and stability in the high-Mach-number compressible case, in
particular the three-dimensionality as opposed to two-dimensionality of the most
unstable first mode and the existence of higher unstable modes in the high-speed
case.

A major impediment in conducting useful and reliable compressible boundary layer
stability and transition experiments was (and still remains) the high level of free-stream
disturbances characteristic of conventional wind tunnels (Reshotko 1994). A high level
of free-stream disturbances is often responsible for a bypass of physical mechanisms
which would otherwise occur in low-disturbance environments (e.g. instability growth
and boundary layer receptivity to low-intensity external disturbances), preventing these
mechanisms from being properly studied and documented. Discrepancies between
measurements and theory, and scatter between data collected in different facilities,
have for the most part been attributed to different levels and characteristics of
free-stream noise (Laufer 1954; Morkovin 1957, 1959; Pate & Schueler 1969) or in
some cases to difficulties with measurement techniques (Schneider 2001). To advance
knowledge of receptivity mechanisms at high speeds, it is necessary to perform
experiments in a low-disturbance environment and to document characteristics of the
remaining free-stream disturbances such as the disturbance source, disturbance level,
speed of propagation and disturbance spatial structure.

In general, the ‘turbulence’ in the free stream of a supersonic wind tunnel consists
of the superposition of a vorticity mode, an acoustic mode and an entropy mode
(Kovasznay 1953; Morkovin 1957). The predominance of any one of these classes
of disturbances depends upon the design and construction of the facility as well
as the operating flow conditions. Bushnell (1990) discusses sources of free-stream
disturbances in wind tunnels. At high speed (M > 2.5), the dominant free-stream
disturbance mode, for well-designed conventional facilities operated at relatively high
unit Reynolds number conditions, is sound radiation originating from turbulent or
transitional nozzle-wall boundary layers (Laufer 1961, 1964; see also discussion in
Bushnell 1990 and Reed et al. 1997). Kendall in 1967 performed an experiment on a
flat-plate boundary layer at Mach 4.5 in a wind tunnel facility operated at pressures
low enough for the tunnel boundary layers to be laminar (Kendall 1967). In the
absence of sound radiation from the wall boundary layers, the free-stream turbu-
lence level was reduced to very low values (< 0.05%). Controlled waves were then
introduced in the laminar boundary layer by means of a glow discharge actuator.
Measurements of spatial amplification rates and phase velocities showed excellent
agreement with the numerical calculations by Mack (Kendall 1967) and confirmed
unequivocally the applicability of compressible linear stability theory and the differ-
ences between the compressible and incompressible case. More recent experiments,
aimed at investigating the evolution of naturally occurring instability waves in zero-
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pressure-gradient laminar boundary layers were conducted by Kendall (1975), by
Lebiga, Maslov & Pridanov (1979) and by Demetriades (1989). A number of experi-
mental investigations have also been conducted to study stability and transition on
round cones (Schneider 2001 has reviewed three of these contributions).

Only a few detailed experiments have been performed with the intent of examining
nonlinear stability phenomena in compressible flows (e.g. Kimmel & Kendall 1990;
Kosinov et al. 1994). For the most part, investigations in the nonlinear regime
have been aimed at determining the effects of mean flow parameters (such as wall
temperature, nose bluntness etc.) on the location of transition (e.g. Chen, Malik
& Beckwith 1989). More has been accomplished theoretically. Secondary instability
mechanisms in compressible boundary layer flows have been investigated recently by
Masad & Nayfeh (1990), El-Hady (1992), Ng & Erlebacher (1992), and Chang &
Malik (1994). Direct numerical simulations of transition in compressible flows have
been carried out by several authors (e.g. Erlebacher & Hussaini 1990; Pruett & Zang
1992; Thumm, Wolz & Fasel 1989; Pruett & Chang 1993). In addition, methods based
on the parabolized stability equations (PSE) have been applied to the study of linear
and nonlinear spatial wave evolution in compressible flows (Pruett & Chang 1993).

In the present work, results are presented from a comprehensive study of the
stability, receptivity and transition of a Mach 3 flat-plate boundary layer. Following
Kendall (1967), the present experiments were conducted while operating the facility
at low unit Reynolds number conditions in an attempt to achieve laminar nozzle
boundary layers and consequently low-intensity free-stream fluctuations. Performing
the experiment at a low unit Reynolds number condition has the further advantage
of yielding a relatively thick laminar flat-plate boundary layer along a substantial
length of the plate in which accurate measurements of amplitude distributions can be
made. Also, the frequencies of the boundary layer disturbances are relatively low and
well within the frequency response of the hot-wire sensor used for the measurements.

Emphasis has been placed on characterizing the free-stream disturbances, meas-
uring the amplitude and development of naturally occurring linear instabilities and
providing comparisons with theoretical predictions. Also, measurements were made,
in the nonlinear regime, of both the disturbances and the mean boundary layer profile.
Unlike most of the previous studies, calibrated disturbance amplitudes are provided
which will allow direct comparisons with computational and future experimental
investigations.

2. Experimental apparatus
2.1. The LTVG wind tunnel

The experiments have been carried out in the test section of the Low Turbulence
Variable Geometry (LTVG) Mach 3 wind tunnel at Princeton University. A schematic
of the facility is shown in figure 1. A system of ejectors is used to run the facility at
low stagnation pressures (typically 4–5 p.s.i.a.).

A critical component of the tunnel is the stagnation chamber. It has a relatively
large volume (figure 1) and was designed to provide attenuation of flow disturbances
before the contraction section. A noise dampening metal cone and a rigimesh screen
are utilized to attenuate the acoustic noise generated by the inlet valve, and a set of
screens and honeycombs spanning the section of the stagnation chamber were used to
reduce the characteristic length scale of free-stream turbulence. Vorticity fluctuations
(free-stream turbulence) are further reduced by the long length of the settling chamber
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Figure 2. Outline of test section with the flat plate.

(approximately 15 ft) and by the large ratio of settling chamber cross-sectional area
to sonic nozzle throat area (55 to 1) (Morkovin 1959).

2.2. The flat plate and the traversing mechanism

A brass flat plate, 28.5 in. long, was used for the experiments (figure 2). It has a
0.75 in. thick main body with removable tapered leading and trailing edge sections.
The plate spanned the 8 in. wide test section and was positioned horizontally 2 in.
below the centre-plane of the square nozzle (figure 2). Figure 2 shows that the flow is
expanded underneath the plate to a test section height of 10 in. in order to partially
compensate for the rise in static pressure through the shock waves below the plate
leading edge. The leading edge of the plate was located at the joint between the nozzle
and the test section. In order to minimize corner disturbances, and simultaneously
guarantee the mechanical strength of the model, a double-tapered leading-edge design
was adopted (figure 2). The trailing edge was also bevelled, in this case with an angle
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P0 (p.s.i.a.) 4.0 (±1%) 4.2 (±1%) 5.0 (±1%)
Re/in. 5.54× 104 (±7%) 5.82× 104 (±7%) 6.91× 104 (±7%)
M 2.98 (±2%) 2.98 (±2%) 2.98 (±2%)
〈ρu〉fs/(ρU)fs 0.11% 0.16% 0.39%
(1 < f < 40 kHz)

Table 1. Experimental operating conditions (T0 = 290 K) and free-stream disturbance levels.

of 10◦, to decrease total pressure loss and to reduce the size of the subsonic region
in the aft wake where pressure disturbances can propagate upstream and interfere
with the boundary layer flow over the plate. The working surface of the plate (main
body, and leading and trailing edge assembled together) was ground to a finish of
4 corresponding to an r.m.s. roughness of about 4 × 10−6 in. The leading edge was
checked regularly for imperfections and a uniform sharpness of about 0.5 × 10−3 in.
(measured with a calibrated telescope) was maintained.

A traversing mechanism coupled to a stepper motor and mounted over the upper
surface of the test section was used to move the probe in the vertical direction.
Access to the flat-plate model in the test section was obtained through circular holes
located on the centreline of the upper surface (figure 2). Probe bodies of different
lengths permitted measurements at intermediate downstream stations along the plate.
The stepper motor was driven by a software-controlled pulse generator and required
5000 pulses per inch of traverse. A calibrated potentiometer, connected to the A/D
converter of the data acquisition system, was used to monitor the actual position
of the traversing block. To minimize the transmission of vibrations from the wind
tunnel to the probe driving mechanism, the latter was isolated from the test section
with vibration damping pads.

2.3. The data acquisition system

A modular Camac System with ±5 V input range was used for the acquisition of
mean and fluctuating quantities. A Le Croy 8212A Fast Data Logger was used to
sample all the mean quantities at 200 Hz, whereas a 4 channel Le Croy TD8210 Wave
Form Analyzer, with adjustable sampling frequency (up to 1 MHz) and a resolution
of 9.8 mV per count (10 bits), was utilized to acquire simultaneously (less than 5 ns
uncertainty) the rapidly fluctuating hot-wire voltages.

3. Mean flow surveys and test conditions
Pitot-static surveys were made of the mean flow field along the centreline of the

flat plate from approximately 3 in. to 13 in. downstream of the leading edge. The
rectangular shape of the tip of the Pitot tube was obtained by flattening the tip
of a 0.065 in. diameter stainless steel tube. The resulting probe dimensions were
approximately 0.02 in.× 0.08 in. with a rectangular orifice 0.011 in.–0.013 in. high.

The initial y-position of the Pitot-static probe was measured with respect to the
wall by utilizing a magnifying telescope provided with a calibrated scale. Because of
the low dynamic loading at the flow conditions of the experiment, observations during
runs showed that no significant probe deflection occurred. The error in determining
the initial distance from the wall was found to be ±0.002 in.

The experiments were mainly conducted at three values of the stagnation pres-
sure as indicated in table 1. The free-stream Mach numbers, reported in the table,
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Figure 3. Mean boundary layer profiles. Pitot-static measurements vs. boundary layer calculations.

were measured 4 in. downstream of the leading edge along the plate centreline.
Also included in the table is the measured free-stream disturbance level at each
of these conditions (the brackets 〈 〉 define the root-mean-square of the measured
fluctuations).

Due to the short running time (80–100 s) and the thermal characteristics of the plate,
the plate surface was determined to be virtually isothermal during the experiments
with a wall temperature equal to 1.1 times the adiabatic temperature at the wall
(Tw = 1.1Taw).

3.1. Mean boundary layer profile and transition Reynolds number

Since the Mach number is obtained directly from measured pressure quantities, Mach
number profiles were selected (as opposed to velocity or mass-flux profiles) to make
comparisons with compressible boundary layer calculations.

The measured profiles along with the computed profile corresponding to the ex-
perimental conditions (A. V. Fedorov 2001, private communication) are plotted in
similarity coordinates in figure 3. Good agreement is obtained between the meas-
urements and the predictions except in the vicinity of the leading edge (x < 5 in.,

R < 550 (R = Re
1/2
x )) where probe interference effects due to the small boundary

layer thickness δ (δ < 0.08 in., h/δ > 0.25 where h is the height of the probe) cause a
spurious bulge in the mean profile for 4 < η < 9 (η = y/(x/R)) and a small overshoot
at the outer edge of the boundary layer (R = 491, figure 3). Also included in figure 3
is the transitional flat-plate boundary layer profile measured at x = 12.75 in. at the
highest stagnation pressure, P0 ∼ 5.0 p.s.i.a. (R = 970). It is important to appreci-
ate that transition was observed at a ‘low’ Reynolds number only at the highest
stagnation pressure of 5 p.s.i.a. (for this case Rtr ∼ 800, Rex,tr ∼ 0.6–0.7 × 106 and
Re/in. = 7.1× 104). The reason is that the free-stream disturbance level measured at
the plate leading edge was considerably higher than at 4 p.s.i.a. (table 1) and also that
at the highest pressure the free-stream disturbance amplitude grew more rapidly in the
streamwise direction downstream of the leading edge (figure 10) and finally that, as



Stability and transition at Mach 3 89

determined from free-stream disturbance measurements (Graziosi 1999), transition on
the upper-wall boundary layer causes a further increase of the free-stream disturbance
level at approximately 9–10 in. downstream from the plate leading edge. Nonethe-
less, the transition Reynolds number determined at P0 ∼ 5.0 p.s.i.a. is comparable
with measurements in conventional supersonic facilities reported by previous authors.
In the AEDC tunnel D (12 in.×12 in.), at M = 3, Beckwith & Miller (1990) report
Rex,tr ∼ 1.2–1.3 × 106 measured at Re/in. ∼ 6 × 105 and Rex,tr ∼ 1 × 106 measured
at Re/in. ∼ 3 × 105. Also, from figure 3 in their article, where results corresponding
to three conventional facilities are presented (JPL 20 in., tunnels A and D at AEDC),
the measured flat-plate transition Reynolds number decreases with tunnel size and
unit Reynolds number.

At P0 ∼ 4.0 p.s.i.a., with a low free-stream disturbance level of 0.11%, the boundary
layer profiles collapsed to the laminar similarity profile down to approximately 12 in.
from the leading edge. Further downstream, before transition occurred at this low
stagnation pressure, the profile began to depart from the similarity solution, evidently
due to a small local adverse pressure gradient (Graziosi 1999).

4. Hot-wire calibration and mass-flux amplitude distributions across the
boundary layer

4.1. Hot-wire technique: operation, data acquisition and reduction

Small custom-made hot-wire probes manufactured by Auspex, Inc. were employed
in order to measure the disturbances in the free stream and in the boundary layer.
Simultaneous, dual-probe measurements were performed to determine streamwise and
spanwise flow correlations in the free stream. In order to minimize probe interference
effects for measurements in the boundary layer, the main body of the hot-wire probe
was inclined at an angle of approximately 45◦ with respect to the plate surface and it
remained outside the boundary layer during the measurements.

The sensor was a tungsten filament, 2.75× 10−4 in. in diameter and approximately
0.04 in. long. The hot-wire probes were used in conjunction with Dantec constant-
temperature anemometers (model DISA 55M01 Main Unit and DISA 55M12 Bridge
Circuit). Typical hot-wire frequency responses of approximately 120 kHz were ob-
tained by a standard square-wave method. At a constant wire temperature, the
hot-wire output in supersonic flow is typically assumed to be sensitive to mass-flow
fluctuations and total temperature fluctuations. In order to maximize the frequency
response and simultaneously reduce the total temperature sensitivity, the hot wire was
operated at the relatively high overheat ratio τ of 0.7 to 0.8 (τ = (Tw −Tr)/T0, where
Tw is the wire temperature, Tr the recovery temperature at the wire and T0 the total
temperature).

The length of the sampled time series of the hot-wire voltage was selected accord-
ing to the lowest frequency component of interest. Frequencies above 1 kHz were
quantitatively examined in the present study, and thus sequences for a period of at
least 200 ms were recorded at a sampling rate of 250 kHz. The time signals were
then processed to yield the spectra of the fluctuations. Standard techniques such
as partitioning of the original data sample were employed to minimize the standard
deviation of the power estimate (Press et al. 1992). Power spectral estimates and cross-
correlations were evaluated using different segment lengths and different numbers of
segments with fixed length. The results showed that a choice of 48 partitions with a
partition length of 1024 points would yield convergence of the energy estimates for a
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Figure 4. (a) Mean boundary layer profiles, hot-wire measurements vs. boundary layer calcula-
tions; (b) measured r.m.s. mass-flux amplitude distributions (free-stream calibration) vs. computed
eigenfunction (Fedorov). F = 5.0× 105, Re/in. = 5.51× 104.

number of narrow frequency bands 1.4 kHz wide (within 2% for frequencies greater
than 2 kHz). In order to minimize the problem of power ‘leakage’ from adjacent
frequency components, the discrete data segment was multiplied by a proper time
window (‘Welch window’) before the FFT was computed (Press et al. 1992).

4.2. Free-stream versus boundary layer hot-wire calibration and determination
of the y-distribution of the mass-flux disturbance amplitude

In supersonic flows, the hot wire is usually calibrated in the steady free stream of
the wind tunnel by changing the stagnation pressure at a fixed Mach number. It is
common practice to use the following non-dimensional form of King’s law to reduce
the data points to an analytical form:

Nu0 = X + Y Ren0 (4.1)

(the subscript 0 indicates that the fluid properties are evaluated at the stagnation
conditions). For a given wire and a constant Prandtl number, X and Y are functions
solely of the overheat ratio; in particular they are assumed to be independent of Mach
number in the range 1.2 < M < 5 and for a wire Reynolds number Re0 greater than
20 (Smits, Hayakawa & Muck 1983). A free-stream calibration and King’s law were
employed in the present experimental investigation to yield the values of the hot-wire
sensitivities and thus the r.m.s. mass-flux amplitudes in the free stream (despite the
low value of Re0,fs = 6.5–7).

Despite the fact that the above conditions for the Mach number and wire Reynolds
number were typically not met across the compressible boundary layer, and that the
stagnation pressure could not be lowered enough during the calibration runs to safely
interpolate all the data points taken in the boundary layer, a free-stream calibration
and King’s law were initially employed to determine mass-flux amplitude distributions
across the boundary layer.

Typical laminar boundary layer mean profiles obtained with two different hot-wire
sensors, calibrated in the free stream, are shown in figure 4(a) along with the numerical
calculations of the boundary layer (A. V. Fedorov 2001, private communication). The
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surveys do not extend to the wall region since the supersonic free-stream calibration
obviously breaks down in the subsonic portion of the boundary layer. The overall
agreement between the hot-wire measurements and the numerical predictions might
be considered satisfactory; however a careful examination of the figure reveals the
systematic occurrence of a ‘knee’ in the hot-wire profile at a value of ρU/(ρU)fs ≈ 0.6
(at a corresponding value of the similarity coordinate η of approximately 7). This
discontinuity seemed most likely to be a spurious result of the hot-wire measurement
technique rather than an abnormality of the boundary layer flow. This was confirmed
by the Pitot measurements displayed in figure 3. It was confirmed also, by visual
inspection through a high-resolution telescope, that no significant prong and/or wire
deflection, which might account for the ‘knee’ in the mean profile, occurred during a
hot-wire boundary layer survey.

Figure 4(b) shows the corresponding narrow frequency band fluctuation ampli-
tude profiles obtained with the free-stream calibration of the hot wires. The selected
non-dimensional frequency, F = 5.0× 10−5 where F = 2πνf/U2

fs, corresponds ap-
proximately to the most unstable boundary layer linear mode for the explored range
of Reynolds number R. The predicted eigenfunction is also included in figure 4(b)
(M = 2.98, Tw = 1.1Taw) (A. V. Fedorov 2001, private communication). A broad
range of spanwise modes has been included in the theoretical stability model as
discussed in the Appendix and § 6.2. It is immediately apparent from figure 4(b) that
the measured amplitude distribution is distinguished by a double hump shape which
is not predicted by the linear stability calculations (the corresponding measured r.m.s.
voltage profile is also characterized by a double peak). Previous authors have also
observed the occurrence of double-peak amplitude distributions across a flat-plate
boundary layer at Mach 3 (e.g. Kendall 1975).

By comparing figure 4(a) and figure 4(b), it is evident that the region between the
two peaks in the amplitude distribution corresponds to the region where the ‘knee’ in
the mean profile occurs.

The hot-wire data of Laufer & Vrebalovich (1960) at a Mach number of 2.2 display
a similar feature for both the mean profile and mean-square voltage profile. The y-
location of the knee in the measured mean profile (figure 15 in Laufer & Vrebalovich
1960) also corresponds closely to the region of the trough between the two peaks in
the mean-square voltage profile (figure 17 in Laufer & Vrebalovich 1960). Laufer &
Vrebalovich (1960) suggest that the outer peak in the r.m.s. voltage distribution could
be the result of an anomalous hot-wire response since, during their experiment, the
double-peak distribution was observed only for high values of the overheat ratio.

To clarify the cause of the double-peak distribution for the results in figure 4(b),
it was decided to calibrate the hot-wire mean voltage measured across the boundary
layer directly against the mean mass-flux boundary layer profile (figure 3). Calibration
curves (mean hot-wire voltage versus mean boundary layer mass-flux normalized by
the corresponding free-stream values) obtained by means of this boundary layer
calibration are displayed in figure 5(a). Figure 5(b) shows the mass-flux sensitivity
distributions for the two hot-wire sensors used for the measurements of figures 4
and 5(a). The sensitivity distributions were determined by differentiating smooth
curves fitted through each of several calibration curves measured in the similarity
region of the boundary layer flow (a sample is shown in figure 5a) and by taking
the average of the derivatives at several locations across the boundary layer. It is
interesting to note that a relatively flat region characterizes the calibration curves for
0.55 < ρU/(ρUfs) < 0.65. A corresponding dip in the sensitivity curves (at η ∼ 7) can
be seen in figure 5(b).
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The ‘knee’ in the mean profiles of figure 4(a) and the trough between the two
peaks in the corresponding r.m.s. voltage amplitude distributions of figure 4(b) can
be explained as a result of this region of low wire sensitivity in the central portion of
the boundary layer (they occur at exactly the same η as where the dip in the sensitivity
distributions of figure 5b occurs). Note that the hot-wire sensitivities (and consequently
the disturbance amplitudes) could not be reliably determined from the boundary layer
calibration for η > 10: at the outer edge of the boundary layer, due to the small
mean mass-flux gradient, a large scatter in the computed sensitivities was observed.

The r.m.s. mass-flux distributions which result from the boundary layer calibration
of the hot wires are shown in figure 6. As is apparent, the boundary layer calibration
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yields single-peak distributions which are consistent with the predicted amplitude
distributions. The reasons for the remaining quantitative discrepancy between meas-
urements and predictions in the outer part of the boundary layer need further
investigation.

The behaviour of the calibration curve across the boundary layer (figure 5a) and
the corresponding dip in the sensitivity distribution (figure 5b) appears to be a result
of the complexity of the low-Reynolds-number supersonic flow field around the wire.
The heat transfer from the hot-wire sensor, and so the Nusselt number, depends in
general on a large number of parameters such as the Reynolds number based on the
wire diameter, the Prandtl number, the Mach number, the Knudsen number Kn, the
overheat ratio and the physical properties of the sensor (for a detailed discussion see
Hinze 1975). Whenever the flow departs from the continuum condition (Kn > 0.01),
the Mach number is expected to enter the problem indirectly through the Knudsen
number and Reynolds number (since M ∼ Kn Re).

Figure 7 shows the calculated profiles of the Reynolds number (Re0/10) and
M/Re (∼ Kn) across the boundary layer for typical experimental conditions (P0 =
4.0 p.s.i.a., T0 = 290.5 K, Tw = 1.1Taw). It is apparent from figure 7 that, for the
present case, the Nusselt number dependence on the Mach number could be significant
because of the high values of the Knudsen number and correspondingly low values
of Re0 across the boundary layer. It is interesting to note that the region of low
wire sensitivity (figure 5b) and the corresponding ‘knee’ in the distribution of the
mean voltage across the boundary layer (figure 5a) occur for a ‘transitional’ value of
the Knudsen number of approximately 0.32 and a local Mach number of ∼ 2.2 at
P0 ∼ 4.0 p.s.i.a. (Re/in. = 5.51× 104). (Interestingly, since the thickness of a shock is
of the order of 5 times the mean free path, at these conditions a shock would have a
thickness of the order of the wire diameter). Results obtained at a different pressure,
namely 5 p.s.i.a., showed that the sensitivity distribution was changed as a result of
the changed distribution of wire Reynolds number.

Finally, we examined the fact that across the boundary layer the hot wire is
sensitive to mass-flux fluctuations as well as Mach number fluctuations (the total
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Figure 8. Hot-film r.m.s. voltage amplitudes measured at several locations on the nozzle walls.

temperature sensitivity is neglected due to the high overheat ratio at which the hot
wire was operated, § 4.1) and that dM/dρU evaluated for the mean profile is different
from the ratio of the Mach number amplitude to the mass-flux amplitude across the
boundary layer (M ′/ρu′). Since in the region of the measurements (η > 4), however,
the difference between dM/dρU and M ′/ρu′ is small (A. V. Fedorov 2002, private
communication), we do not expect this difference to significantly affect the amplitudes
determined with a boundary layer calibration of the hot wire.

5. Free-stream disturbances
All the measurements reported in this section were performed with the plate

installed in the test section. The x, y, z coordinates reported on the figures are the
streamwise, normal and spanwise coordinates respectively. The origin of the reference
system is located at the mid-span of the flat-plate leading edge (figure 12).

5.1. Corner disturbances as sources of free-stream fluctuations†
In order to investigate the source and nature of the residual free-stream disturbances,
hot-film measurements (not calibrated) were made on the centreline of the upper and
side nozzle walls, and near the geometrical corner between the upper wall and the
sidewall (on the sidewall, 0.25 in. from the corner line) at two axial locations along the
nozzle (figure 12) and over a range of unit Reynolds numbers. The hot-film sensors
consisted of a 0.06 in. long and 0.02 in. wide platinum strip coated with quartz, and
yielded typical frequency responses of the order of 130–150 kHz as determined by the
standard square-wave method.

At x = −2.5 in., the hot-film r.m.s. voltage, measured on the centreline of the upper
wall at P0 ∼ 4.0 p.s.i.a., is comparable to the electronic noise level (figure 8). Also, for

† The authors are grateful to Dr J. Kendall for drawing their attention to corner disturbances as
a possible source of free-stream disturbances.
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f > 2 kHz, the corresponding spectrum of the fluctuations is virtually coincident with
the spectrum of the electronic noise (figure 9). These results confirm the absence of any
significant flow disturbances and laminar flow. At the same location, as the stagnation
pressure is increased to 4.5–5 p.s.i.a., a significant increase in hot-film r.m.s. voltage
is measured (figure 8). At a stagnation pressure of approximately 7 p.s.i.a., the r.m.s.
voltage reaches a value which is approximately equal to 3.5 times the ‘undisturbed
flow’ value (in addition the time traces of the hot-film voltage – not reported – begin
to exhibit a turbulent character).

The results in figure 8 also show that up to P0 ∼ 5.0 p.s.i.a., the disturbance level
measured on the centreline of the upper and side walls at x = −8.75 in. is comparable
with electronic noise (correspondingly, the spectrum of the fluctuations matches
the spectrum of the electronic noise for f > 2 kHz) providing evidence that the
boundary layers are laminar at this location and at pressures up to P0 ∼ 5.0 p.s.i.a.
(Re/in. ∼ 7 × 104). At a stagnation pressure of approximately 7 p.s.i.a., the r.m.s.
hot-film voltage, measured on the sidewall boundary layer at x = −8.75 in., increases
by a factor of 7 with respect to the ‘laminar’ value (figure 8), indicating that transition
is occurring (correspondingly high-intensity bursts are observed in the time traces
of the disturbance signal – not reported). Also, at approximately 7 p.s.i.a. and at
x = −8.75 in., the r.m.s. voltage measured on the upper-wall centreline increases to a
value which is approximately 4.5 times the laminar value.

By contrast the disturbance level measured at x = −8.75 in. by the corner sensor is
significant even at a low stagnation pressure of approximately 3 p.s.i.a. and the corre-
sponding hot-film r.m.s. voltage slowly increases as the stagnation pressure increases
above 3 p.s.i.a. (figure 8). Not surprisingly, the corner flow exhibits a disturbed char-
acter at a Reynolds number below the Reynolds number at which undisturbed flow
is measured on the upper and side wall centreline. Lin et al. (1996) have conducted
a computational study of the inviscid instabilities of the corner flow in a Mach 2.4
slow-expansion square nozzle. They found that spanwise cross-flow towards the corner
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Figure 10. Free-stream r.m.s. mass-flux amplitudes measured along the centreline of the nozzle.

line in the convex region of the nozzle induces counter-rotating streamwise vortices
at the corner. These vortical structures produce an inflectional streamwise velocity
profile along the corner bi-sector plane (Lin et al. 1996). Balachandar & Malik (1995)
performed a one-dimensional viscous stability analysis of the incompressible, inflec-
tional bi-sector profile along a streamwise corner. The analysis yielded Rcr ∼ 21 which
is more than an order of magnitude lower than the critical Reynolds number of the
Blasius profile (Rcr ∼ 300) (Balachandar & Malik 1995). No quantitative compari-
sons between the results of the present study and the results in Lin et al. (1996) and
Balachandar & Malik (1995) can be made. However, an order-of-magnitude extrapo-
lation of the computational findings suggests that the corner flow, in the present Mach
3 case, may become unstable in the nozzle throat region at a unit Reynolds number
well below the lowest unit Reynolds number of the investigation (Re/in. ∼ 5.5× 104).
Unlike the sidewall case, no high-intensity turbulent bursts were observed in the time
traces of the hot-film voltage measured in the corner and on the upper wall for the
explored range of unit Reynolds numbers (Re/in. = 4× 104–1.8× 105).

The results in figure 10 show that the broad-band free-stream disturbance level,
measured with a hot wire along the nozzle centreline, increases with streamwise
distance in the tunnel at a given stagnation pressure. In addition, the growth rate of
the disturbances is evidently substantially larger at the higher stagnation pressure of
approximately 5 p.s.i.a. (Re/in. = 6.96× 104). The calibrated amplitude measurements
in figure 10 were collected in an early stage of the experimental investigation and
before the hot wire had been properly tuned for high-frequency response. In this case
the frequency response was cut off at approximately 15 kHz but it was, nevertheless,
still above the frequency of the most energetic free-stream disturbances (figure 13). In
addition, the data reported in figure 10 have not been corrected for electronic noise.
Finally, we note that the acoustic origin of the most-downstream measurements in
figure 10 (x ∼ 1.5 in.) is approximately located on the nozzle walls at x ∼ −9.5 in.,
upstream of the location (x = −8.75 in.) where undisturbed flow was measured on the
centreline of the upper and side walls up to P0 ∼ 5.0 p.s.i.a. (figure 8).
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The monotonic increase of the free-stream disturbance amplitude with x inside
the nozzle, the observed Reynolds-number dependence of the disturbance level at
a given x (figure 10), the results of the hot-film measurements on the nozzle walls
discussed above (figure 8) and the resemblance of the shape of the free-stream
disturbance spectrum to the spectrum of the corner flow disturbances measured at
the corresponding acoustic origin (P0 ∼ 5.0 p.s.i.a., figure 11) provide strong evidence
that the free-stream disturbances, along the nozzle centreline, in the region of the
leading edge of the plate (down to x = 2.5–3 in.) and at stagnation pressures up
to P0 ∼ 5.0 p.s.i.a., are primarily the result of acoustic radiation from nozzle corner
disturbances which develop in the downstream direction (figure 12). In addition, the
very low free-stream disturbance level measured well inside the nozzle at x ∼ −13 in.
(figure 10) (less than 0.05% which is a value comparable to the disturbance level
measured under quiet operation in the test rhombus of the NASA Mach 3.5 pilot quiet
tunnel, Beckwith et al. 1983) rules out significant vorticity disturbances propagating
from the stagnation chamber and provides further evidence of the acoustic nature of
the measured free-stream fluctuations in the test section.

Additional detailed free-stream measurements were also made downstream from
the leading edge to x ∼ 11.5 in. along the centreline of the plate (Graziosi 1999).
These measurements show that at the lower and intermediate unit Reynolds number
conditions (P0 ∼ 4.0 and 4.2 p.s.i.a.) and at approximately 9.5 in. downstream of
the leading edge, a significant relative increase in the energy of high-frequency
components (6–20 kHz) occurs. The acoustic origin of these measurements on the
sidewalls corresponds approximately to the x-location of the plate leading edge. With
reference to figure 12, we conclude that, at P0 ∼ 4.0 p.s.i.a., the region of the flow,
defined by Mach lines, where nozzle corner-flow disturbances are the primary source
of free-stream disturbances, extends to 9–10 in. from the plate leading edge (along the
plate centreline).
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f(kHz) 1 3 10.5 17
λx,fs (in.) 15.43 5.14 1.47 0.91
λx,BL (in.) (R = 500) N/A 4.79 1.48 0.98
λx,BL (in.) (R = 1000) 12.68 4.84 1.61 1.09

Table 2. Streamwise wavelengths of free-stream disturbances (measured) and most unstable
first-mode waves (calculated – Balakumar). Re/in. = 5.51× 104.
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Sidewall
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o x
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8.75 in.

~14 in.

Figure 12. Regions of the flow where corner disturbances are the primary source of free-stream
disturbances. Hatched: P0 ∼ 4.0 p.s.i.a. Shaded: P0 ∼ 5.0 p.s.i.a.

5.2. Frequency content and spatial characteristics of the free-stream disturbance field

The spectra of the free-stream mass-flux fluctuations measured with a hot wire 2.65 in.
downstream of the leading edge, approximately on the centreline of the tunnel,
are shown in figure 13 for the three unit Reynolds numbers of the experiments.
Also shown in figure 13 is the unstable frequency range at R = 400, for a zero-
pressure-gradient Mach 2.98 boundary layer, as predicted by parallel linear stability
theory for adiabatic wall conditions (P. Balakumar 1998, private communication).
The free-stream disturbance levels measured with a calibrated hot wire at x = 3.03 in.,
y = 0.67 in., z = 0 in. and corrected for the electronic noise (by subtracting the squares
of the signals and taking the square root of the result), are reported in table 1. The low-
frequency cutoff value of 1 kHz was selected for the free-stream measurements due to
the significant contribution of tunnel and probe vibrations to the measured spectrum
below a frequency of approximately 700–900 Hz. Correspondingly, the contribution
of actual flow fluctuations at these low frequencies could not be easily extracted from
the measured spectrum. Note that the inferred wavelength of a 1 kHz free-stream
disturbance is approximately 15.5 in. (table 2) and the corresponding value of λ/δ at
R ∼ 470 is large (∼ 220). Also, this cutoff frequency is one order of magnitude lower
than the frequency of the most unstable first-mode wave for this boundary layer
(f ∼ 10 kHz, § 6.1).
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Electronic noise contributes significantly to the free-stream measurements at fre-
quencies above a value of approximately 10 kHz and noise accounts for the entire
measured energy at frequencies higher than approximately 25 kHz and 40 kHz re-
spectively for the lowest and highest unit Reynolds number cases in figure 13. Note
that at P0 ∼ 4.0 p.s.i.a. the free-stream fluctuation level of 0.11% is higher than the
quiet tunnel measurements (in the quiet core) by Beckwith et al. (1983) and the
JPL measurements by Kendall (1967) with laminar wall boundary layer conditions
(values of the order of 0.03% to 0.05%), but is much lower than the turbulence levels
typically measured in conventional supersonic wind tunnels (up to 1%). In addition,
as is apparent from figure 13, at the lowest and intermediate unit Reynolds number,
most of the energy is at frequencies below 5 kHz, below the unstable linear range,
and its magnitude increases considerably as the unit Reynolds number increases from
5.51× 104 to 6.78× 104.

In order to investigate the spatial structure of the free-stream disturbances and
determine the speed of propagation, dual hot-wire measurements were made in
the free stream and the phase and coherence functions were studied. The phase
and coherence functions are defined respectively as the phase and the normalized
amplitude squared of the average cross-spectrum of the two hot-wire signals:

φ
1,2
i = arg(H1

i H
2∗
i ), (5.1)

C
1,2
i =

∣∣H1
i H

2∗
i

∣∣2∣∣H1
i

∣∣2∣∣H2
i

∣∣2 , (5.2)

where H1
i and H2

i are the complex Fourier coefficients corresponding to the frequency
component i of the digital Fourier transforms of the two hot-wire fluctuating voltages.
(C1,2

i = 1 indicates perfect correlation between the hot-wire signals at the frequency i).
Unlike the amplitude, the phase characteristics of the free-stream disturbances,

measured in a region close to the leading edge (figures 14 and 15), were found in
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Figure 15. Phase function measured in the free stream with two hot wires displaced
in both x- and z-directions.

the experiments not to depend significantly on the unit Reynolds number (at least
within the explored range). This result is consistent with the fact that, as argued in
§ 5.1, remaining corner disturbances are the main source of free-stream disturbances,
at the location of the measurements, up to the highest stagnation pressure of 5 p.s.i.a.
(figure 12).

Figure 14 displays the phase (a) and coherence (b) functions obtained with two
hot wires displaced in the spanwise (z) direction and in the transverse (y) direction
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respectively. The measurements were made downstream of the plate leading edge
(x ∼ 2.5–3 in.) approximately on the centreline of the tunnel (above the Mach line
originating at the plate leading edge) at P0 ∼ 5.0 and ∼ 4.0 p.s.i.a. The results show
a symmetric pattern in the z- and y-directions. Note that in both cases the phase
difference is essentially zero for f < 5 kHz and π for f > 9 kHz. The transition
from 0 to π occurs quite abruptly in a range of frequencies 5 < f < 9 kHz. The
coherence function (which is a measure of the degree of correlation as a function of
frequency) exhibits a large broad peak (∼ 0.8–0.9 at P0 ∼ 5.0 p.s.i.a. and ∼ 0.65 at
P0 ∼ 4.0 p.s.i.a.) at low frequencies (f ∼ 2 kHz) followed by a decrease to zero in a
range of frequencies corresponding to the range where the phase jump occurs. As the
frequency increases further (f > 9 kHz), an additional modest peak (∼ 0.2) emerges
in the coherence function (f ∼ 15–20 kHz) followed by a decrease to zero in a range
of frequencies where free-stream disturbances do not contribute significantly to the
energy of the signal (f > 30 kHz).

A simple mathematical model was developed in order to qualitatively interpret the
results of the measurements of the free-stream phase and coherence functions. Acous-
tic radiation from the four nozzle corners is modelled by four conical travelling waves
originating at the corners. Because of the square nozzle section, the resulting acoustic
field would be symmetrical relative to the centreline of the duct. We approximate
these waves as locally plane waves and consider four monochromatic components
such that

hi1 = A cos(kixx+ kiyy + kizz − ωt+ ϕi) (5.3)

where

k1
x = k2

x = k3
x = k4

x = kx,

k1
y = −k2

y = −k3
y = k4

y = ky,

k1
z = k2

z = −k3
z = −k4

z = kz

(for simplicity, equal amplitudes are assumed). The phase fronts of these plane waves
are inclined at opposite angles relative to the streamwise direction and give rise to a
symmetric acoustic field with respect to the centreline of the duct.

We now compute the time cross-correlation between the output signals of two
sensing elements which are displaced in the spanwise (z) direction and immersed in
the flow field of four such waves. We assume that h1(x, y, z, t), h2(x, y, z, t), h3(x, y, z, t)
and h4(x, y, z, t) are not correlated in phase (as would be the case for random
disturbances). The component hi(x, y, z, t) contributes to the cross-correlation as

Ci(τ) =
1

T

∫ T

0

hi(x, y, z, t) hi(x, y, z + ∆z, t+ τ) dt,

where ∆z is the distance between the sensors. Substituting the expression for hi(x, y, z, t)
in the above integral yields

Ci(τ) =
A2

2
cos(kiz∆z − ωτ).

Thus, the correlation coefficient is

C(τ)

2A2
=
∑
i

Ci(τ)

2A2
= cos(kz∆z) cos(ωτ). (5.4)

Note that regardless of the value of ∆z and the spanwise wavelength of the disturbance
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(λz = 2π/kz), the time correlation will either have a maximum (cos(kz∆z) > 0) or a
minimum (cos(kz∆z) < 0) at τ = 0. For a fixed ∆z, as the frequency increases the
components of the wave vector will increase and the amplitude of the correlation
coefficient in equation (5.4) (and therefore the coherence as determined from equation
(5.2)) would monotonically decrease from a value equal to one (for kz = 0) to a
value equal to zero as kz∆z → π/2. Correspondingly, the phase difference will be
zero in the range 0 < kz∆z < π/2. As the frequency (and the wavenumbers) increases
further (π/2 < kz∆z < π) the amplitude of the correlation coefficient will now increase
monotonically from zero and the phase will change to π. The frequency at which the
phase jump will occur is a function of the spacing ∆z between the sensing elements
and corresponds to the value at which the amplitude of the correlation coefficient
goes to zero. Similarly, because of the assumed symmetry, the correlation between the
signals of two sensors displaced in the y-direction is obtained by replacing z and ∆z
with y and ∆y in equation (5.4). In figure 14, the value of the peak of the measured
coherence function at f ∼ 15–20 kHz is smaller than the value of the peak at the
lower frequency of ∼ 2 kHz due presumably to the smaller characteristic lengths of
the disturbances with respect to the sensor spacing.

The model can be used to estimate locally, on the centreline of the duct, the
spanwise (z) and transverse (y) wavelengths for the free-stream disturbances at a
frequency of approximately 7 kHz where the phase jump occurs (figure 14). We find

λz(f̃) = 4∆z ≈ 1.5 in., λz(f̃)/δ ≈ 21, f̃ ≈ 7 kHz,

λy(f̃) = 4∆y ≈ 1.8 in., λy(f̃)/δ ≈ 25, f̃ ≈ 7 kHz,

where δ is the value of the boundary layer thickness measured on the plate leading
edge at x = 3.5 in.

To determine the streamwise speed of the free-stream disturbances, measurements
were performed with the sensors displaced in the streamwise as well as in the spanwise
direction (to avoid interference). The resulting phase function is shown in figure 15
for two different values of the streamwise sensor spacing and two values of the unit
Reynolds number (corresponding to P0 ∼ 4.0 and ∼ 5.0 p.s.i.a.). The results confirm
that the phase distribution does not depend significantly on the stagnation pressure
(for measurements sufficiently close to the leading edge). An examination of figure 15
again reveals the occurrence of two relatively well-defined ranges of frequencies
(f < 5 kHz and 9 < f < 25 kHz) where, in this case, the phase function shows a linear
behaviour in each region.

If we express the phase difference between the two signals as

φ = ωt0,

where ω is the circular frequency and t0 = ∆x/cx (∆x is the sensor spacing in the
x-coordinate and cx is the streamwise propagation speed), then

φ = 2πf
∆x

cx
. (5.5)

Thus, if from experiment we find that the phase depends linearly on the frequency,
it implies that the streamwise disturbance velocity cx is frequency independent. Fur-
thermore, the above relation predicts that the slope dφ/df will be dependent on ∆x
as is confirmed by the results in figure 15.

The results shown in figure 15 along with equation (5.5) were utilized to deter-
mine cx. Linear fits in the 0–5 kHz large-wavelength high-coherence frequency range
yielded an average of cx = 1286(±7%) ft s−1. The fact that cx/U ≈ 0.64 implies that
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the acoustic wave fronts are propagating upstream with respect to the flow. Corre-
spondingly (U− cx)/a = 1.07 which also implies that the acoustic wave fronts are, on
average, oblique to the x-axis.

We note that, in general, equation (5.5) can be applied only when the phase
difference is measured with sensors solely displaced in x (∆z = 0). Since, in the
experiments, a displacement in z was necessary to avoid wake interference from
the upstream probe on the downstream sensor, we use the model to examine the
applicability of equation (5.5) for the results of the present measurements. In the
model with the four-component acoustic field, with ∆x 6= 0 and ∆z 6= 0, the cross-
correlation between the sensors is

C(τ) =
∑
i

Ci(τ) =
∑
i

1

T

∫ T

0

hi(x, y, z, t) hi(x+ ∆x, y, z + ∆z, t+ τ) dt.

Introducing the expressions for hi from equation (5.3) and performing the calculations
gives

C(τ) = 2A2 cos(kz∆z) cos(ωτ− kx∆x). (5.6)

Evidently, the spanwise displacement ∆z appears only in the amplitude modulation
term cos(kz∆z) and the phase term is 2πf∆x/cx as in equation (5.5). Note that, as in
the case where ∆x is zero, the phase will change by π when kz∆z = π/2. This result
follows from the assumption that the four waves in the model contribute equally to
the correlation. For waves for which the wavelength is not large compared to the
sensor spacing (as is the case for high-frequency components), we might expect a
larger contribution to the correlation from waves with phase fronts approximately
aligned with the straight line between the two sensors than from their symmetrical
counterpart with opposite kz . The unequally weighted contribution of high-frequency
components to the correlation would result in a dependence on ∆z of the phase term
in equation (5.6). This may account for the phase change (in the frequency range
5 < f < 9 kHz) being less than π for the higher value of ∆x and the slight departure
from linear behaviour observed above the phase jump (f > 9 kHz) for the results of
the measurements reported in figure 15.

From the standpoint of the receptivity of the flat-plate boundary layer to the
measured free-stream disturbance field, it is important to note that the measured
value of cx/U ≈ 0.64 is close to the streamwise phase speed of the first mode
instabilities for the zero-pressure-gradient boundary layer. Table 2 reports the values
of the inferred streamwise wavelengths in the free stream (λx = cx/f) for a number
of disturbance frequencies of interest and the corresponding calculated streamwise
wavelengths for the most unstable linear first mode waves (P. Balakumar 1998, private
communication). The similarity in streamwise wavelengths between the measured free-
stream acoustic disturbances and boundary layer instability waves is remarkable. Such
a similarity is expected to promote the conversion from forced acoustic boundary
layer oscillations to eigenmodes and possibly extend the region of receptivity to free-
stream disturbances downstream of the leading-edge region. By contrast, at subsonic
speeds the wavelength of free-stream sound waves is much larger than the streamwise
wavelength of any unstable Tollmien–Schlichting waves at the same frequency. In this
case, forced waves entering the boundary layer at the leading edge must experience a
considerable reduction in wavelength as they progress downstream in order to match
the spatial scale of the unstable boundary layer eigensolutions (Goldstein 1983; Lam
& Rott 1960). It is also generally found that, because of the mismatch in wavelengths,
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Figure 16. Spectra of the boundary layer fluctuations measured at several x-locations along the
centreline of the flat plate. Re/in. = 5.51 × 104. Solid lines indicate ranges of unstable frequencies
(parallel linear stability theory, adiabatic wall – Balakumar).

the growth rate of the unstable modes in low-Mach-number boundary layers is not
affected by acoustic free-stream disturbances.

6. Development of boundary layer disturbances and receptivity results at
P0 = 4.0 p.s.i.a.

The downstream development of the natural disturbances in the laminar boundary
layer was investigated by measuring the fluctuations with hot wires at a number of
x-locations on the plate. The hot-wire results reported in this section were collected
utilizing the same hot wire at a fixed overheat ratio. Very small inconsequential drifts
in wire properties (e.g. less than 1% change in wire resistance and cutoff frequency)
were found throughout the investigation. Also, the total temperature variation between
different experiments was found not to exceed 3 ◦K with a corresponding variation in
hot-wire sensitivity of the order of 2% at η ∼ 6.0.

6.1. Frequency content of boundary layer oscillations

The spectra of the voltage fluctuations measured in the boundary layer at several
x-stations along the plate are shown in figure 16. The y-location of the measurements
corresponds approximately to the inner peak of the double-hump broad-band distri-
bution of the r.m.s. voltage fluctuation across the boundary layer (η ∼ 6.0, § 4.2). Also
indicated in figure 16 are the ranges of first-mode unstable frequencies as predicted
by parallel linear stability theory for adiabatic wall conditions (P. Balakumar 1998,
private communication) and the frequency of the maximum N factor (amplitude
ratio) at R = 900 (L. M. Mack 1996, private communication). Note that the predicted
unstable frequency range for Tw = 1.1Taw is less than 10% larger than the unstable
range corresponding to adiabatic wall conditions for the range of Reynolds number
R of the measurements.
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Figure 17. Spectra of the boundary layer and free-stream fluctuations measured at several
x-locations along the centreline of the flat plate. Re/in. = 5.51× 104.

These results clearly show the energy growth, for a wide range of frequency com-
ponents, as the Reynolds number R increases at the given free-stream unit Reynolds
number. Noticeable is the increase in energy of disturbances at low frequencies outside
the linear unstable range.

Figure 17 shows the same boundary layer spectra as in figure 16 together with
the corresponding free-stream spectra. The free-stream frequency spectra have been
scaled up by a variable factor (which depends on R) in order to match the lower
frequency range of the boundary layer spectra where growth due to linear instability
is not expected. The hump present in the free-stream spectra at f ∼ 80–90 kHz is
the result of electronic noise in the anemometry circuit, while the narrow spikes that
occur at the high end of the spectrum are possibly due to mechanical vibrations of
the wire and/or the probe–shaft assembly or strain-gauging effects.

At the first x-location corresponding to R = 444 (figure 17a), the shape of the
spectrum in the boundary layer closely resembles the measured spectrum in the free
stream above 2–3 kHz. It is not certain whether the difference at lower frequencies is
due to experimental scatter or to a lower receptivity of the boundary layer with respect
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to these very low frequencies. We discuss quantitative issues regarding receptivity and
boundary layer disturbance growth in the next section but it can be qualitatively
inferred from the spectra of the hot-wire voltage in figure 17 that acoustic forcing
leads to a substantial amplification of free-stream disturbances in the boundary layer
(note the scale factor of 150 in figure 17a), and also that low-frequency boundary
layer disturbances, outside the unstable range, grow with distance downstream.

A particular feature revealed by the plots of the spectra measured in the boundary
layer is the appearance of a relatively broad peak at f ∼ 10 kHz particularly evi-
dent downstream of the first x-station (figure 17b, c, d ). The energy associated with
this high-frequency band grows downstream and the corresponding peak becomes
narrower as R increases. The high-frequency peak developing in the boundary layer
fluctuation spectra has no counterpart in the free stream. In addition the high-
frequency hump is contained in the linear unstable range and the corresponding
frequency peak agrees very closely with the frequency of maximum N factor as pre-
dicted by linear theory (figure 16). The above remarks, together with the observation
that the high-frequency peak shifts to lower frequencies as R is increased (at the given
unit Reynolds number), demonstrate that this high-frequency development is directly
linked to linear instability mechanisms.

No evidence of nonlinear wave evolution in the boundary layer, such as depar-
ture from similarity of the mean and fluctuation profiles and the emergence of
high-frequency fluctuations (above the linear unstable range), was found at the low
stagnation pressure of 4 p.s.i.a. for x < 12 in.

6.2. Receptivity results and amplitude growth curves

The narrow-band r.m.s. voltage (obtained from the spectrum) at the inner peak in
the distribution across the boundary layer was determined at several x-stations from
hot-wire surveys. Since the y-amplitude distributions show a satisfactory degree of
similarity for x < 12 in., the inner peak location of the r.m.s. voltage was found to
correspond closely to a constant value of the similarity variable η = 6.0 (±2%) along
the entire length under investigation. The only exception was found for measurements
made close to the leading edge (x ∼ 3.5 in., R ∼ 440) where, probably due to probe
interference effects (see also § 3.1), the value of the similarity coordinate at the inner
peak of the r.m.s. voltage distribution was found to be approximately 6% larger than
further downstream. Fits to a large number of boundary layer calibration curves
(a sample is shown in figure 5a), measured throughout the similarity region of the
boundary layer flow, were differentiated to yield corresponding distributions of the
hot-wire sensitivity. The average value of the sensitivity at η = 6.0 was then used to
determine a representative r.m.s. mass-flux amplitude in the boundary layer 〈ρu〉BL.
Notice that the value η = 6.0 corresponds to a location across the boundary layer
which is below the location of the maximum r.m.s. mass-flux amplitude (ηmax = 7.2,
figure 6) and the amplitude at η = 6.0 is approximately 80% of the maximum
amplitude. Also note that the value of the sensitivity at η = 6.0, determined from a
boundary layer calibration, was found to be on average approximately 20% larger
than the corresponding value determined from a free-stream calibration of the hot-
wire (§ 4.2).

The growth of 1.4 kHz wide frequency band amplitudes for three selected frequency
intervals has been examined. The non-dimensional values of the centre frequency are
F = 1.4 × 10−5, F = 5.0 × 10−5, F = 8.1 × 10−5 and the corresponding values of
the dimensional frequency for Re/in. = 5.51 × 104 are f = 3 kHz, f = 10.5 kHz and
f = 17 kHz respectively.
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Figure 18. Neutral stability diagrams for two wave angles. M = 2.98, T0 = 278 K (parallel linear
stability theory, adiabatic wall – Balakumar).

The intermediate frequency, f = 10.5 kHz, corresponds closely to the peak of the
high-frequency hump in the spectrum in the explored range of Reynolds numbers
(figure 16). According to the linear predictions, the low-frequency narrow band centred
around f = 3 kHz is expected to decay initially; this particular frequency was chosen
so that the effect of acoustic free-stream forcing on the laminar boundary layer could
be investigated since the corresponding frequency component in the free stream is
relatively energetic. The highest frequency, f = 17 kHz, corresponds approximately to
the upper limit of the unstable linear range where a sufficient amount of disturbance
energy can still be measured at P0 ∼ 4.0 p.s.i.a. The neutral stability diagram computed
by P. Balakumar (1998, private communication) for a Mach 2.98 laminar boundary
layer is shown in figure 18 (parallel linear stability theory, adiabatic wall conditions).
The measurement range of Reynolds number R for the selected frequency bands is
also shown.

Before discussing the streamwise amplification of each of the narrow frequency
bands, it is instructive to investigate quantitative receptivity issues concerning the
excitation of boundary layer waves by free-stream disturbances in the leading-edge
region. Figure 19(a) shows the free-stream amplitude level of two narrow frequency
bands centred at f = 3 kHz and f = 10.5 kHz respectively, and corrected for the
electronic noise, as a function of the unit Reynolds number (the highest frequency
band at 17 kHz was not included because of the very low absolute level of the free-
stream fluctuations and corresponding low signal-to-noise ratio at this frequency).
The locations of the measurements in figure 19 are in the range 3.6 < x < 3.9 in. The
reasons why the free-stream disturbance level is seen to increase with unit Reynolds
number are discussed in § 5.1. Figure 19(b) reports the ratio between the narrow-band
r.m.s. mass-flux fluctuations measured at η = 6.0 and the corresponding free-stream
value from figure 19(a). Ratios of 6 for the lower frequency and 10 for the higher
frequency are obtained which, consistent with the observations made at the end of
§ 5.2, testify to the strong effect of acoustic free-stream forcing on the initiation of
boundary layer waves. It is interesting to note that the ratio plotted in figure 19(b)
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appears to be relatively independent of the stagnation pressure: higher free-stream
forcing initiates larger boundary layer waves in almost direct proportion. Finally,
note that boundary layer modes are damped at the location of the measurements for
F = 1.4×10−5 (Rcr ∼ 550, Tw = 1.1 Taw) and instability growth begins upstream of the
location of the measurements for F = 5.0× 10−5 (Rcr ∼ 270, Tw = 1.1 Taw) (R = 444
for the measurements at Re/in. = 5.54 × 104 and R = 527 for the measurements at
Re/in. = 7.10× 104 of figure 19).

The amplitude growth curves for the narrow frequency bands measured at P0 ∼
4.0 p.s.i.a. are shown in figures 20–22. The continuous curves in these figures are the
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results of calculations made by A. V. Fedorov (2002, private communication) and
are based on a non-parallel linear stability theory (M = 2.98, Tw = 1.1Taw). Mode
averaging, at a given frequency, has been performed to account for the contribution
to the amplitude from a broad band of spanwise modes. In the experiment, a broad
band of spanwise modes is expected to contribute to the amplitude of the boundary
layer waves due to boundary layer receptivity to the three-dimensional free-stream
acoustic field resulting from corner flow radiation. Since the spanwise spectrum of
the boundary layer waves was not measured, calculations were performed for several
values of the spanwise interval of integration ∆Fβ (Fβ = βν/U is the non-dimensional
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spanwise wavenumber and ∆Fβ is such that Fβ,max, Fβ,min = Fβ,m ± ∆Fβ , where Fβ,m
corresponds to the spanwise mode of maximum amplification). The effect of ∆Fβ on
the predicted amplitudes is shown in figures 21 and 22 respectively for F = 5.0× 10−5

and F = 8.1×10−5. Evidently, the growth rate decreases as ∆Fβ increases due to wave
cancellation effects. This trend, however, is relatively weak. Note that ∆Fβ = 1.0×10−4

and ∆Fβ = 1.5 × 10−4 correspond respectively to approximately 2/3 of the unstable
spanwise range and to the whole unstable spanwise range for F = 5.0 × 10−5 at
R = 800 (A. V. Fedorov 2001, private communication). Finally, two simple receptivity
assumptions, leading-edge receptivity and uniform distributed receptivity, were used
to evaluate a receptivity density function included in the expression for the boundary
layer disturbance amplitude (expression (A2) in the Appendix). Additional details
regarding these predictions are provided in the Appendix.

Based on the data available from several runs, the maximum scatter affecting
the measured amplitudes within the boundary layer appears to be of the order
of 15–17%. Slight variations of stagnation pressure between runs, which affect the
amplitude of the free-stream disturbances and consequently the induced boundary
layer fluctuations, contribute to the dispersion in the data. The fitting procedure,
which was used to determine the amplitude at η = 6.0 in the boundary layer, is
an additional source of error in the experimental data. Finally, an uncertainty of
approximately ±10% was found when determining the average value of the sensi-
tivity at η = 6.0. The uncertainty in the sensitivity affects the absolute value of the
r.m.s. mass-flux fluctuations but it does not affect the growth rates, as inferred from
figures 20–22.

Figure 21 illustrates the streamwise amplitude growth of the 10.5 kHz narrow
band. In this case, the investigated range of the Reynolds number lies entirely in
the region of instability for this frequency component. In figures 21 and 22, the
calculated amplitudes are scaled to match the corresponding experimental values at
R = 440. Indeed, the calculations yield the disturbance amplitudes up to an arbitrary
constant since no attempt was made to evaluate quantitatively the receptivity density
function on the basis of the available measurements in the free stream (see the
Appendix).

The agreement between measured and calculated growth rates is good in the case
where a uniform receptivity assumption is used for the calculations (figure 21a). With
a leading-edge receptivity assumption, the theoretical model tends to overpredict
the observed experimental amplitude growth (figure 21b). These results support a
hypothesis that, due to the observed streamwise wavelength matching between free-
stream disturbances and boundary layer eigenmodes (§ 5.2), receptivity to free-stream
disturbances is not confined to the leading edge, as is the case for incompressible
boundary layer flow, but it extends downstream of the neutral branch through the
region of unstable mode development. Despite the larger experimental scatter in the
data, due to the small disturbance amplitudes at high frequencies (and therefore larger
noise-to-signal ratio), similar good agreement between measurements and calculations
is shown in figure 22(a) for the streamwise growth at the highest frequency of
f = 17 kHz. Further calculations (not reported) show that these growth rates are
underpredicted by approximately 20% if a parallel assumption for the mean boundary
layer flow is used in the theoretical model.

We conclude that, for these frequency components (for which the corresponding
free-stream spectral energy is very small, figure 13), eigenmode instability and uniform
distributed receptivity are the dominant mechanisms in determining the growth rate
downstream of the neutral branch of the stability diagram.
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The behaviour of the 3 kHz frequency component is displayed in figure 20. Note
that in figure 20, the theoretical amplitudes have been scaled so that at the neutral
point (Rcr = 550) they match the experimental amplitude at R = 440. Evidently, the
experimental measurements indicate an early amplitude growth which is not consistent
with the results of the linear stability analysis. In addition the experimental growth
rate in the theoretical unstable region (R > Rcr) is substantially higher than the
predicted one despite the low value of ∆Fβ = 0.25× 10−4 selected for the calculations
of the amplitude of the 3 kHz component.

The anomalous growth of low-frequency components may be explained in terms
of forcing mechanisms whereby acoustic boundary layer disturbances, resulting from
the direct interaction of free-stream acoustic waves with the boundary layer, grow
downstream starting from the leading-edge region. According to a forcing theory
(Mack 1975), the ratio between the maximum amplitude across the boundary layer
and the free-stream amplitude of an acoustic disturbance grows to a maximum at
a distance downstream of the leading edge whose value is inversely proportional to
the frequency. In addition, the magnitude of this maximum is inversely proportional
to the frequency (Mack 1975). These results are found to be valid regardless of the
disturbance wave angle and wave velocity (as long as the latter, cx, is supersonic
relative to the free-stream velocity) (Mack 1975).

Mack finds a ratio of the maximum amplitude of the forced response in the
boundary layer to the amplitude in the free stream of approximately 7 at Mach 3,
R = 440 and Tw = 0.8Taw for an oblique acoustic wave (wave angle equal to 55◦)
of non-dimensional frequency F = 1.5 × 10−5 propagating with a speed equal to 0.4
times the free-stream velocity (Mack 1975). In spite of differences between some of
the parameters for this prediction and those for the present experiments (in particular
the propagation speed of the disturbances, the temperature at the plate surface and
the fact that, in the experiments, a broad band of spanwise components are expected
to contribute to the measured disturbance), the predicted value of the amplitude ratio
compares well with the corresponding value of approximately 7.5 (the ratio of 6 from
figure 19(b) is measured at η = 6.0 where the amplitude is 80% of the maximum
value) measured at R = 444 (Re/in. = 5.54× 104) for the same disturbance frequency
(F = 1.5×10−5). Mack (1975) finds that the propagation speed of the disturbances has
little effect on the forced boundary layer response and also that the wall temperature
has almost no influence on the forced response for 0.8 < Tw/Taw < 1 and for a wave
angle of 55◦.

These theoretical findings and the fact that, for the present experiment, most of the
free-stream energy is concentrated at low frequencies (f < 5 kHz) may explain the
disagreement between the measurements and the results of the stability calculations
in the case of the 3 kHz frequency component. Note, however, that the forcing theory
of Mack predicts a decrease of the amplitude of these forced acoustic disturbances
downstream of the neutral branch. Thus, the anomalous growth rate of the 3 kHz
narrow frequency band for R > Rcr could be the result of the growing free-stream
disturbances, with distance downstream, in the experiment (the amplitude of the
incoming free-stream wave is assumed to be uniform in the forcing theory of Mack
1975).

Additional measurements, conducted at a slightly higher value of Re/in. = 5.74×104

(P0 ∼ 4.2 p.s.i.a.), indicate that a slight change in unit Reynolds number produces an
overall upward shift in the absolute values of the amplitudes (due to the corresponding
increase in free-stream disturbances), but it does not affect the growth rates which
are found (Graziosi 1999).
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Figure 23. Mean boundary layer profiles at P0 ∼ 5.0 p.s.i.a. Hot-wire measurements and boundary
layer calculations.

7. The development of transition at P0 = 5.0 p.s.i.a.
Figure 23 shows the mean boundary layer profiles measured at several streamwise

stations along the plate at P0 ∼ 5.0 p.s.i.a. The data were collected using a hot-wire
sensor calibrated in the free stream. As discussed in § 4.2, the free-stream calibration
procedure does not yield reliable distributions of the mass-flux sensitivity across the
boundary layer but, in general, the resulting laminar mean profile shows a satisfactory
agreement, above the sonic line, with the Pitot-static measurements and the boundary
layer calculations. The first significant departure from similarity is observed to occur
at x ∼ 9–10 in. (profile at R = 836 in figure 23). The results show that the outer
part of the layer deviates from the laminar profile first and, as the Reynolds number
increases further, progress towards a fuller profile is found (see also figure 3).

Examination of the frequency content of the fluctuations (figure 24), measured
at a distance from the plate surface corresponding to the position of the maximum
broad-band r.m.s. voltage, shows the rapid development of low-frequency components
in a region of the flow where the mean profile departs from similarity (R = 836 and
R = 941). (It was found that the high-frequency spikes in these spectra were the
result of mechanical vibrations of the sensor and/or strain-gauging effects.) Figure 25
presents a magnification of the high end of the frequency spectrum at P0 ∼ 4.0 p.s.i.a.
(figure 25a) and P0 ∼ 5.0 p.s.i.a. (figure 25b). At the lower stagnation pressure, high-
frequency components, which lie outside the unstable linear range, decay as the
Reynolds number R increases in a manner which is consistent with linear stability
theory. Conversely, at the higher unit Reynolds number conditions (figure 25b), very
high frequencies (f > 30 kHz) are observed to grow considerably throughout the
whole range of R examined.

7.1. Growth curves and boundary layer amplitude distributions

The broad-band mass-flux amplitudes, measured at P0 ∼ 5.0 and ∼ 4.0 p.s.i.a. and
at a location corresponding to the maximum value of the broad-band r.m.s. voltage
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distribution across the boundary layer, are shown in figure 26. Amplitudes determined
both with a boundary layer calibration and a free-stream calibration of the hot
wire (§ 4.2) are included in the figure. Amplitudes determined with a boundary
layer calibration are not available for P0 ∼ 5.0 p.s.i.a. at the two most downstream
measurement locations (R > 800) because of the departure from similarity of the
mean profile and the lack of detailed Pitot-static measurements in the transition
region. Note that, in the similarity region, the mass-flux amplitudes, determined from
a free-stream calibration, appear to be overpredicted by a maximum of approximately
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25% with respect to the amplitudes determined from a boundary layer calibration.
At the location where the mean boundary layer profile is first observed to depart
from the similarity solution (R ∼ 800, P0 ∼ 5.0 p.s.i.a.), the broad-band amplitude in
figure 26 is approximately 10% of the free-stream mean mass flux.

Broad-band r.m.s. voltage distributions across the boundary layer are presented
in figure 27. The profiles measured at R = 527 and R = 677 collapse reasonably
well in similarity coordinates (figure 27b) and, as for corresponding measurements at
P0 ∼ 4.0 p.s.i.a., they are characterized by a double-hump shape. Profiles corresponding
to selected narrow frequency bands display the same qualitative behaviour as the
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broad-band amplitude profiles (Graziosi 1999). A departure of the fluctuation profiles
from similarity takes place further downstream at a distance which corresponds to a
location where the mean profile departs from similarity (R = 836; figure 27b). The
main feature of the y-distributions of the r.m.s. voltage measured at later stages of
transition (R = 836 and R = 941; figure 27b) is a relatively higher growth rate of the
fluctuations in the wall and outer region of the boundary layer with respect to the
region of the peak which gives rise to fuller profile shapes as R is increased. Analysis
of the time traces of the oscillating voltage show that this change is linked to the
appearance of energetic spike-like structures in the wall and outer flow regions of the
boundary layer.

7.2. An analysis of the time traces of the fluctuating voltage at transition

To help reveal the character of the nonlinearities which develop as the transition
region is approached, the time histories of the fluctuating voltage were examined.

Figures 28–31 show time traces measured at four streamwise stations at several
locations across the boundary layer (δlam, in the figures, is the thickness of a laminar
boundary layer at the corresponding R). At the most upstream station (R = 527,
figure 28) quasi-periodic waves (f = 10–30 kHz) are apparent in the time trace col-
lected in the region where the peak in the broad-band amplitude distribution occurs
(figure 28b). The signal clearly appears to be composed of high-frequency compo-
nents residing in the linearly unstable portion of the spectrum and low frequencies
(e.g. 2 kHz) which have been previously linked to amplification of forced acoustic
disturbances.

Evidence of strong nonlinear development appears downstream at R = 677 (fig-
ure 29). Correspondingly, the broad-band mass-flux amplitude in figure 26 reaches
a value of 4.5–5%. Single spike-like features occur close to the plate surface and in
the outer portion of the boundary layer (figures 29a and 29c) whereas short large-
amplitude oscillations at the frequency of the instability waves emerge occasionally
in the hot-wire waveform at y/δlam ∼ 0.7 (figure 29b). It is interesting to note that
the spikes point upward in the wall region (higher than average mass flow rate) and
downward in the outer part of the layer (lower than average mass flow rate) directly
contributing to mixing enhancement throughout the boundary layer. It is important
to emphasize that the spikes in the boundary layer are the result of mechanisms
inherent to the flat-plate boundary layer transition process and are not a consequence
of direct forcing from free-stream disturbances. Figures 29(d )–29(g) show the time
traces of the free-stream fluctuating voltage at different heights above the plate (note
the change of the time scale between figures 29(a–c) and 29(d–g)). The intensity of the
spikes diminishes as y/δlam increases. Eventually, for y/δlam > 1.27, no recognizable
large events appear in the time traces of the hot-wire fluctuating voltage. It is also
important to note that at this stage of the transition process, the mean boundary
layer profile and the y-distributions of the r.m.s. voltage have not yet departed from
similarity: the occurrence of the spikes in the time signals is not yet statistically suffi-
ciently significant to affect the average measurements. An early additional indication
of nonlinearity, however, is the observed growth of very high-frequency components
in the spectrum as discussed at the beginning of this section (figure 25b). While
no correlation measurements were made, it is interesting to notice that the time
scales between spikes in figure 29 appear to be qualitatively consistent with the time
scales of low-frequency fluctuations which have been linked to amplification of forced
acoustic disturbances. This observation suggests that forced acoustic boundary layer
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Figure 28. Time traces of the fluctuating hot-wire voltage. R = 527, Re/in. = 7.04× 104.

disturbances may play an active role in the transition process and directly contribute
to the development of nonlinearities.

The first departure of the mean and r.m.s. profiles from similarity occurs at a
downstream station corresponding to R ∼ 800 and the time histories of the fluctu-
ating voltage are presented in figure 30 at five different heights in the boundary
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Figure 29 (a–f). For caption see next page.

layer for R = 809. The evolution of the spike-like events, above and below the
location of maximum amplitude, continues and the occurrence of the spikes is now
more frequent. Close to the wall, traces with double upward spike-like structures
appear (figure 30a, b). Figure 30(d ) shows that multiple spikes tend to emerge in the
outer region as well. In addition, the extent of the inner and outer regions across
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Figure 29. Time traces of the fluctuating hot-wire voltage. R = 677, Re/in. = 7.04× 104.

the boundary layer where the large events are measured grows considerably as the
Reynolds number R increases. It is interesting to note that the region where the
upward events take place develops approximately around the location of maximum
Reynolds stress due to linear instability waves (y/δlam ∼ 0.5; L. M. Mack 1996, private
communication).

The time traces lose any regular pattern and display a chaotic behaviour further
downstream at R = 941 (figure 31). The fuller shape of the mean profile (figure 23)
and the r.m.s. voltage distributions (figure 27) at the corresponding x-location clearly
indicate that the transition process has reached a late stage. Close to the wall, multiple
spikes coalesce (figure 31a, b). Large events are now noticeable everywhere across the
boundary layer.

Kachanov and collaborators (see the review paper by Kachanov 1994) have studied
in detail the mechanics of the formation and development of the spike occurring in the
K-regime of transition for the incompressible boundary layer. In addition, Borodulin
& Kachanov (1990) drew attention to upward ‘saw-like’ structures close to the wall
which occurred at late stages of transition concurrently with the appearance of the
downward spikes in the outer region of the Blasius boundary layer. Figure 30 in
Kachanov (1994), shows oscilloscope traces measured in a transitional incompressible
boundary layer at various distances from the wall. The qualitative resemblance with
the time traces reported in figure 31 is clear (the high coherence of the structures in
figure 30 in Kachanov 1994 is due to the artificial generation of the disturbances).
As in the present experiment, the spikes in Kachanov’s traces are found before any
significant distortion of the mean profile takes place.

8. Conclusions
The paper has presented and discussed results concerning stability, receptivity and

transition to turbulence in a Mach 3 flat-plate boundary layer for a slightly heated
wall condition (Tw = 1.1Taw).

The wind tunnel was operated at low stagnation pressure conditions (P0 ∼
4–5 p.s.i.a.; Re/in. ∼ 5.5 × 104–7.0 × 104) and the mass-flux free-stream disturbance
level at the lowest unit Reynolds number (Re/in. ∼ 5.5× 104) was found to be 0.11%
with most of the energy concentrated at frequencies below the first-mode unstable
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Figure 30. Time traces of the fluctuating hot-wire voltage. R = 809, Re/in. = 7.04× 104.

range (f < 5 kHz). The nozzle-wall boundary layers were laminar at the lowest unit
Reynolds number of the experiments, with the exception of residual disturbances
measured in the nozzle corners.

An investigation of the disturbance environments in the free stream and on the
nozzle walls was undertaken prior to exploring the flat-plate boundary layer flow.
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Figure 31. Time traces of the fluctuating hot-wire voltage. R = 941, Re/in. = 7.04× 104.

Notwithstanding the low disturbance level, a picture of a well-correlated acoustic
disturbance field in the test section emerged from hot-wire and hot-film measurements
and corresponding physical modelling. The measurements also showed that corner
disturbances were the primary source of free-stream fluctuations at the low stagnation
pressure of approximately 4 p.s.i.a. and as far as x ∼ 9–10 in. downstream of the
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leading edge along the plate centreline. The non-dimensional propagation speed of
the free-stream disturbances was found to be approximately 0.64 (approximately
independent of frequency), which was shown to yield streamwise wavelengths which
are remarkably close to the wavelengths of the corresponding first-mode instability
waves.

Amplitude distributions across the boundary layer were measured in detail. The
r.m.s. voltage distributions and the r.m.s. mass-flux distributions obtained by calibrat-
ing the hot wire in the free stream displayed a double-peak shape, which has also
been found by previous authors at Mach 3 (e.g. Kendall 1975). It was shown that, at
least in the present case, this unexpected behaviour is not the result of a genuine flow
phenomenon (as has been proposed) but rather a consequence of the change in the
mass-flux sensitivity of the hot-wire sensor within the boundary layer, arguably due
to Reynolds and Knudsen number effects. When the hot wire was calibrated against
the mean boundary layer profile, a single-peak amplitude distribution was established
which is consistent with the computed eigenfunction. This boundary layer calibration
procedure was then used to determine streamwise distributions of the r.m.s. mass-flux
disturbance amplitude for a number of frequency bands.

Measurements made in the leading-edge region (3.6 < x < 3.9 in.) show that the
free-stream acoustic disturbances interact with the boundary layer and initiate mass-
flux boundary layer oscillations which, at the location of the measurements, were
found to be 6 times larger at F = 1.4 × 10−5 and 10 times larger at F = 5.0 × 10−5

than the corresponding disturbances in the free stream. Downstream from the leading
edge, at the lowest unit Reynolds number of the investigation (Re/in. ∼ 5.5 × 104,
P0 ∼ 4.0 p.s.i.a.), low-frequency boundary layer waves (e.g. F = 1.4 × 10−5) were
observed to grow in a region both upstream and downstream of the neutral branch
and in a manner which is inconsistent with theoretical results based on stability theory.
The maximum boundary layer amplitude of a frequency component F = 1.4× 10−5,
relative to the free-stream amplitude and measured upstream of the neutral branch,
is consistent with the results of the acoustic forcing theory of Mack (1975). On
the other hand, good agreement between the measurements and the results of non-
parallel linear stability theory showed that the growth of a well-defined unstable
high-frequency band (peaked at F ∼ 5.0 × 10−5), for which the corresponding free-
stream disturbance energy is very small, is due to mechanisms of linear instability
and distributed receptivity. Comparisons between measured and predicted growth
rates for these high-frequency boundary layer waves provide evidence that the region
of receptivity is not confined to the leading edge, as in the incompressible case,
but extends downstream of the neutral branch through the region of instability
growth (distributed receptivity). In the experiments, the close matching of streamwise
wavelength between free-stream disturbances and eigenmodes adds support to this
hypothesis. These results on receptivity are being followed by further study using
direct acoustic forcing.

The late stages of transition were also investigated at a higher unit Reynolds
number Re/in. ∼ 7.0 × 104 (P0 ∼ 5.0 p.s.i.a.) with a correspondingly higher free-
stream turbulence level of 0.39%. High-frequency components (outside the linear
unstable range) were found to grow throughout the range of Reynolds number R
explored (500 < R < 950). This growth is most likely linked to the development
of nonlinearities which give rise to spike-like structures in the time traces of the
fluctuating voltage. Any possible connection between the spikes and low-frequency
forced acoustic disturbances is a subject for further work. The distortion of the
similarity shape of the mean boundary layer profile and of the disturbance amplitude
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profile occurs downstream of the location where the spikes are first observed. The
broad-band mass-flux amplitude, measured at a location across the boundary layer
where the r.m.s. voltage fluctuation peaks, was found to be approximately 4.5–5%
at the x-station where the spikes were first detected and approximately 10% at the
x-station where departure from similarity of the mean and r.m.s. amplitude profiles
was observed.

Qualitative comparisons with results reported by Kachanov (1994) in an incom-
pressible two-dimensional boundary layer indicate a resemblance in the main features
of the time traces for the late stages of transition.
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is gratefully acknowledged. The authors also wish to acknowledge the contribution
to this work by A. V. Fedorov and the valuable comments and theoretical results
provided by Drs P. Balakumar, J. M. Kendall and L. M. Mack.

Appendix
By A. V. Fedorov

Moscow Institute of Physics and Technology,
16 Gagarin Street, Zhukovski 140160, Russia

Under the assumption that a first-mode wave of eigenvalue αfm(β, ω) (where α, β
and ω are the streamwise and spanwise wavenumbers and frequency respectively) is
excited by a corresponding acoustic wave component (αa, β, ω) of amplitude Aa, the
amplitude of the former can be expressed as

Afm = AaCa→fm(x0)qfm(ym, x) exp

(∫ x

x0

iαfm(x) dx+ iβz

)
, x > x0, (A 1)

where Ca→fm is a receptivity coefficient evaluated at the initial point x0, and qfm(ym, x)
is the first-mode eigenfunction calculated at the point ym of maximum mass-flux
disturbance.

In the more general case where receptivity is distributed over an axial length
x00 6 x0 6 x01 and several transverse modes contribute to the overall amplitude
such that the β-spectrum is different from zero in a range βmin 6 β 6 βmax, the r.m.s.
amplitude of a first-mode wave with frequency ω is derived from averaging expression
(A 1) over β and x0:

A2
fm,rms =

const

x01 − x00

∫ x01

x00

[
1

βmax − βmin

∫ βmax

βmin

|AaGa→fm(x0, β)qfm|2

× exp

(
−2

∫ x

x0

αfm dx

)
dβ

]
dx0, (A 2)

where Ga→fm(x0, β) is a receptivity density function.
Expression (A 2) has been evaluated using a multiple scales method (Tumin &

Fedorov 1982) for a number of frequencies ω and β-intervals of integration to
predict the amplification of boundary layer fluctuations and to compare with the
corresponding growth rates of the measured boundary layer disturbances (figures 20–
22).

The shape of the receptivity density function Ga→fm(x0, β) has been determined
according to two different receptivity assumptions. For the case of ‘leading-edge
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receptivity’, acoustic disturbances are assumed to be internalized by the laminar
boundary layer in the leading-edge region, consequently the receptivity density func-
tion is chosen to be a delta function concentrated along the plane x0 = const (where
x0 is a streamwise distance from the geometrical leading edge of the order of the
first-mode wavelength). The model assumes a uniform amplitude distribution as a
function of β at x0. For the ‘uniform receptivity’ hypothesis, the receptivity density
function is assumed to be constant for x > x0 over the entire surface of the plate
(again, x0 is a streamwise distance from the leading edge of the order of the first-mode
wavelength). This second model simulates the case where acoustic receptivity occurs
over the entire plate surface.

Finally, the theoretical eigenfunctions included in figures 4(b) and 6 were calculated
as the r.m.s. values

〈ρu〉(η) =

√
1

βmax − βmin

∫ βmax

βmin

q2
fm(η) dβ.
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